

Systems for Measuring and Controlling Oxygen



# Oxygen meter **U19 Series Measuring module**

\*\*\* Version 1.1 \*\*\*

#### **EC Declaration of Conformity**

for

Oxygen measuring and control unit Type U19-SB

This device has been designed for industrial purposes in accordance with:

EN 61000-6-4: EN 61000-6-2:

It is compliant with the directives: *EMC Directive: 2014/30/EU Low Voltage Directive: 2014/35/EU RoHs: 2011/65/EU Radio Equipment Directive 2014/53/EU* 

Description of measures taken to assure compliance: Quality management system DIN EN ISO 9001:2015, No. 12 100 27736 TMS

This declaration becomes invalid if changes are made without our consent.

Kirchheim/Teck, 28/09/2023

Place, Date

Signature

© 2019 METROTEC GmbH Heinkelstrasse 12 • 73230 Kirchheim • Germany Phone +49 (0)7021 95336-0 • Fax +49 (0)7021 95336-13 www.metrotec.eu • info@metrotec.de

# **Table of Contents**

| 1                        | Safety Instructions4              |
|--------------------------|-----------------------------------|
| 2                        | Preface5                          |
| 3                        | Introduction                      |
| 4                        | Measuring Principle7              |
| 5                        | General Layout                    |
| 5.1<br>5.2<br>5.3        | Measuring Module                  |
| 6                        | Device Start-up9                  |
| 6.1<br>6.2<br>6.3        | Switching the Measuring Module on |
| 7                        | Measured Value Output10           |
| 8                        | Configuration10                   |
| 8.1<br>8.2<br>8.3<br>8.4 | Correcting the Measured Value     |
| 9                        | Interfaces12                      |
| 9.1<br>9.2               | Analog Interfaces                 |
| 10                       | App for Android13                 |
| 11                       | Connection Diagram14              |
| 12                       | Powerlink16                       |
| 12.1<br>12.2             | Integrating an XDD file           |
| 13                       | Specifications19                  |
| 14                       | Drawings20                        |

# Safety Instructions

|   | Please read these operating instructions carefully before installing<br>and using the device.<br>Improper use of the product will invalidate the warranty!                                                                                                                                                                                                        |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | The ambient conditions described in the Specifications chapter must<br>be complied with in order to ensure the device's proper functioning<br>and operational safety.                                                                                                                                                                                             |
|   | The device may only be started up and operated by qualified and<br>trained personnel. The operator of the device must ensure that all<br>applicable regulations and guidelines are complied with. These are,<br>among others, the EU Directive on work safety, national work safety<br>legislation, accident prevention regulations, etc.                         |
| Â | Please ensure that the supply corresponds with the information given<br>on the type plate. All coverings necessary to provide touch<br>protection must be installed. In case the device is interconnected<br>with other devices and/or installations, the consequences must be<br>considered and appropriate precautions taken before switching the<br>device on. |
|   | In some cases, hot parts or surfaces may be unprotected during or<br>after installing or uninstalling the device. Appropriate precautions<br>must be taken to avoid injuries and/or damage.                                                                                                                                                                       |
| * | In case the device shows defects which suggest that it will not be<br>possible to operate it safely, it must not be put into operation. We<br>recommend to have the device inspected at least once a year at the<br>factory or by a customer service representative.                                                                                              |
| X | Disposal of the device must be performed according to the applicable regulations.                                                                                                                                                                                                                                                                                 |

### 2 Preface

The measuring device serves for recording oxygen partial pressures in gas atmospheres in connection with an oxygen sensor. Such sensors operate at high temperatures. Therefore, precautions must be taken to keep ignitable gas mixtures from reaching the sensor or the device. In case of the sensor ceramic breaking, sample gases may leak or air may enter the sample gas side. Should this occur, applicable measures must be provided for to protect the environment and device parts from damage.

Wrong entries, leaks, corrosion, condensation, etc. may cause damage of the plant and erroneous measurements. It is vital to have all parts of the system maintained regularly.

The oxygen meters and the attachments have been produced and controlled subject to a consistent quality assurance process in accordance with DIN EN-ISO 9001.

Installation and operation must be performed subject to compliance with all local and special regulations. These particularly include VDE and DVGW requirements.

Depending on the application, a periodic inspection of the measuring device in terms of measuring accuracy and function may be required and must be performed in the course of calibration and inspection procedures after initial commissioning.

# **3** Introduction



### **Oxygen Measuring Module U19-SB**

The oxygen measuring module in connection with a Type A19-NC oxygen sensor is used for measuring oxygen in gases.

# 4 Measuring Principle

Oxygen measuring devices are designed to process signals of an oxygen sensor made of stabilised zirconium dioxide. The zirconium dioxide, a ceramic also referred to as solid state electrolyte, is perfectly suited to serve as an oxygen-ion conductor at high temperatures.

Within certain temperature limits, which depend on the doping of the material concerned, such ion conductors are able to fill empty spaces in their crystal lattice with oxygen ions. The oxygen ions form itself on a conductive contact layer, which usually consists of platinum.

Thus, the oxygen concentration in a sample gas is essential for the extent of oxygen activity and accordingly the number of oxygen ions.

The basic structure of a sensor revolves around a solid state electrolyte which is contacted on both sides. One side of the electrolyte is operated by a reference gas, such as air, the other one with sample gas. The mechanical design of the sensor separates both gas sides from each other, thus preventing the gases to mix.

Depending on the application, either heated or unheated sensors will be used. Unheated sensors are predominantly used in ovens, while heated sensors come into play in applications, where gases below 600 degrees Celsius are to be measured. (The measuring principle requires a minimum temperature of 500 - 650 degrees Celsius.)

Heated sensors are adjusted to a specific target temperature by means of a temperature controller integrated in the processing electronics. The temperature of heated and unheated sensors is measured by the electronic unit and is an essential element in the calculation of the oxygen level (oxygen partial pressure).

The value is calculated by means of the following formula:

$$EMK = \frac{R \cdot T}{4 \cdot F} \cdot \ln(\frac{P_1}{P_2})$$

whereby

- R = 8.31 J/mol K
- T = Temperature in Kelvin
- F = 96493 As/mol
- P1 = Oxygen partial pressure on the reference side with 0.20946 bar
- P2 = Oxygen partial pressure on the sample gas side
- EMF = Electromotive force in Volt

#### **5 General Layout**

### 5.1 Measuring Module

The U19-SB series measuring module includes the following functions:

- Measures the partial pressure of oxygen in connection with a separate Type A19-NC sensor
- Displays the measured value in a 4 to 20 mA range (0 to 20 mA optional)
- Generates alarms
- Data transfer via PowerLink

The module is parametrised after the installation, if necessary, and will operate permanently with these settings.

#### Note:

In order to implement extensive changes and to display measured values, the METROTEC *App for Android or a PowerLink connection is required.* 

### 5.2 Sensor

The measuring module requires a separate Type A19-NC extractive oxygen sensor to enable its functioning.



Oxygen Sensor Type A19-NC

# 5.3 Description of the Measuring Electronics

Both sides are equipped with plug connections and LEDs.

At the left side there is the energy supply with "U-IN" input and "U-OUT" output in order to form a loop for additional devices. In addition there are the "BUS 1" and "BUS 2" connectors enabling the PowerLink connection as well as LEDs signalling the communication.



On the right are connections for alarms, analog measuring signals and sensor as well as operating information LEDs.



# 6 Device Start-up

# 6.1 Switching the Measuring Module on

The measuring module is wired up in accordance with the wiring diagram. The module is ready to start when the supply voltage is applied.

After heating up the sensor, the green "Ready" LED signals readiness, which otherwise shows a red light.

If the currently measured value is below the set limit, the alarm LED lights green, otherwise the colour red signals a limit value alarm.

After heating up, the measuring module delivers the transmitted measured value at the mA output.

### 6.2 Measurement

After the starting routine the device is ready for use and can determine the oxygen content in gases. This requires supplying the sample gas according to the sensor type. Alternatively the sample gas contains the sensor.

# 6.3 Switching the Measuring Module off

It is advisable to keep the device continuously in operation. This will avoid the condensation of steam in heated sensors which may cause corrosion.

Should the unit need to be switched off, the energy supply of the measuring module will be interrupted.

See the operating instructions of the respective sensor.

## 7 Measured Value Output

The measuring module can output the measured value linearly. The default setting is 0-5% O2 "linear" at 4-20 mA and a further measuring range of 0-25% O2.

Note 1:

The measuring ranges are fixed and can only be set to values other than those listed above by *Metrotec according to customer specifications*.

Note 2:

A change is possible with the METROTEC app for Android and a daily code.

### 8 Configuration

With the exception of the bus address, changes to the configuration can only be carried out by Metrotec.

Note 1:

To change the bus address, the METROTEC app for Android or a connection to Powerlink is required.

Note 2:

A change is possible with the METROTEC app for Android and a daily code.

The METROTEC app is available for free download at https://metrotec.eu.

# 8.1 Correcting the Measured Value

The measuring system, consisting of the oxygen measuring module U19SB and oxygen sensor A19NC, is calibrated at the factory.

Note:

A change is possible with the METROTEC app for Android and a daily code.

# 8.2 Adjusting the Limit Value

The limit value switches when the current measured value falls below the set limit value. The limit value is within the programmed measuring range 1. An alarm condition is signaled by the alarm LED.

At the same time, the semiconductor relay, whose contact on the alarm plug is available, switches.

The default settings are:

- Switch on high signal at <= 2Vol.-%

- Switch on low signal from >=4 vol.-%

Note:

A change is possible with the METROTEC app for Android and a daily code.

# 8.3 Practical approach

In many cases, the visualization of the mA signal is not conveniently visible near the measurement module. It is therefore suggested to disconnect the mA connection from the "mA 1" or "mA-2" connector and replace it with a commercially available, portable mA measuring instrument.





with pin assignment:



After completing the settings, the previously disconnected connections are restored. **Note:** 

A change is possible with the METROTEC app for Android and a daily code.

# 8.4 Definition of Analog Outputs



Connectors "mA 1" and "mA 2" are analog 4-20 mA outputs. The measuring ranges are described in the Specifications section.

#### 9 Interfaces

# 9.1 Analog Interfaces



Connectors "mA 1" and "mA 2" provide analog 4-20 mA measuring values. The measuring ranges are described in the Specifications section. The outputs provide signals between 4-20 mA as long the "Ready" LED shows a green light. If the "Ready" LED shows a red light, the output is 0 mA.

# 9.2 Digital Interfaces



The "Alarm" connector provides one semiconductor relay each for "Oxygen Limit Value" and for "Measurement ready".

**10** App for Android

Using the app it is possible to view measured values and change configuration settings. Reference is made to the special operating instructions "METROTEC APP". **Note:** 

A change is possible with the METROTEC app for Android and a daily code.

The METROTEC app is available for free download at https://metrotec.eu.

# **11 Connection Diagram**

| CE                | U-IN | U-OUT         | BUS 1<br>BUS 2          |
|-------------------|------|---------------|-------------------------|
| Plug              | Pin  | Designation   | Function                |
| U-IN              | 1    | 24 VG (plus)  | Power Input, 18-36 VG   |
| Connection cable: | 2    | 24 VG (plus)  | Power Input, 18-36 VG   |
| M8-4P, Code A     | 3    | 24 VG (minus) | Power Input, GND        |
| (m)               | 4    | 24 VG (minus) | Power Input, GND        |
|                   |      |               |                         |
| U-OUT             | 1    | 24 VG (plus)  | Power Output, 18-36 VG  |
| Connection cable: | 2    | 24 VG (plus)  | Power Output, 18-36 VG  |
| M8-4P, Code A     | 3    | 24 VG (minus) | Power Output, GND       |
| (f)               | 4    | 24 VG (minus) | Power Output, GND       |
|                   |      |               |                         |
| BUS 1             | 1    | TX +          | Transmit Data + (BUS 1) |
| Connection cable: | 2    | RX +          | Receive Data + (BUS 1)  |
| M12-4P, Code D    | 3    | TX -          | Transmit Data - (BUS 1) |
| (m)               | 4    | RX -          | Receive Data - (BUS 1)  |
|                   | SH   | PE            | Shield                  |
|                   |      |               |                         |
| BUS 2             | 1    | TX +          | Transmit Data + (BUS 2) |
| Connection cable: | 2    | RX +          | Receive Data + (BUS 2)  |
| M12-4P, Code D    | 3    | TX -          | Transmit Data - (BUS 2) |
| (m)               | 4    | RX -          | Receive Data - (BUS 2)  |
|                   | SH   | PE            | Shield                  |

| Pin diagram   |      |        |  |  |  |
|---------------|------|--------|--|--|--|
| Туре          | Plug | Socket |  |  |  |
| M8-4P, Code A |      |        |  |  |  |

# **METROTEC**

| M12-4P, Code D |  |
|----------------|--|
|                |  |

|                   | Alarm | mA 1                      | mA 2 Sensor                      |
|-------------------|-------|---------------------------|----------------------------------|
|                   |       |                           |                                  |
|                   |       |                           |                                  |
| Ala               | m     | Ready                     |                                  |
| Plug              | Pin   | Designation               | Function                         |
| Alarm             | 1     | 24 VG (plus)              | External 24 VG +                 |
| Connection cable: | 2     | Limit value $O_2$         | Semiconductor relay 24V, 1A      |
| M12-5P, Code A    | 3     | GND                       | External GND, no functionality   |
| (m)               | 4     | Measurement ready         | Semiconductor relay 24V, 1A      |
|                   | 5     | PE                        | Shield                           |
|                   | Ū     | 12                        |                                  |
| mA 1              | 1     | 24 VG (plus)              | External 24 VG, no functionality |
| Connection cable: | 2     | 0-25% O <sub>2</sub>      | Analog 4-20 mA (plus)            |
| M12-5P, Code A    | 3     | GND                       | External GND, no functionality   |
| (f)               | 4     | 0-25% O <sub>2</sub>      | Analog 4-20 mA (minus)           |
|                   | 5     | PE                        | Shield                           |
|                   |       |                           | 1                                |
| mA 2              | 1     | 24 VG (plus)              | External 24 VG, no functionality |
| Connection cable: | 2     | 0-1000 ppm O <sub>2</sub> | Analog 4-20 mA (plus)            |
| M12-5P, Code A    | 3     | GND                       | External GND, no functionality   |
| (f)               | 4     | 0-1000 ppm O <sub>2</sub> | Analog 4-20 mA (minus)           |
|                   | 5     | PE                        | Shield                           |
|                   |       |                           |                                  |
| Sensor            | 1     | Sensor -                  | Sensor signal                    |
| Connection cable: | 2     | Sensor +                  | Sensor signal                    |
| M12-8P, Code A    | 3     | Heating +                 | Supply Sensor heating +          |
| (m)               | 4     | Heating +                 | Supply Sensor heating +          |
|                   | 5     | Sense +                   | Sense line +                     |
|                   | 6     | Heating -                 | Supply Sensor heating -          |
|                   | 7     | Heating -                 | Supply Sensor heating -          |
|                   | 8     | Sense -                   | Sense line -                     |

Note:

Digital outputs are potential-free semiconductor contacts (1A, 24V) mA output is isolated.

| Pin diagram    |      |        |  |  |  |
|----------------|------|--------|--|--|--|
| Туре           | Plug | Socket |  |  |  |
| M12-5P, Code A |      |        |  |  |  |
| M12-8P, Code A |      |        |  |  |  |

#### **12 Powerlink**

# **12.1** Integrating an XDD file

| 2 🔉 2 2 2 3 3 1      |             |         |                                                     |
|----------------------|-------------|---------|-----------------------------------------------------|
|                      | V. Position | Version | Beschreibung                                        |
| X20CP1585            |             | 1.4.0.0 | X20 CPU ATOM, 1.0GHz, POWERLINK, 1x IF              |
| s Serial             | IF1         |         | Communication Port                                  |
| 🔔 ETH                | IF2         |         | Ethemet                                             |
| 🔣 PLK                | IF3         |         | POWERLINK                                           |
| 🗄 🖷 🐒 X20BB80        | ST1         | 1.0.1.0 | X20 Rückwand für Buscontroller oder Hub             |
|                      | SL1         | 2.5.3.0 | X20 Bus Controller POWERLINK                        |
| 🧃 X20PS9402          | PS1         | 1.0.2.0 | 24 VDC Einspeisemodul für BC, interne IO Versorgung |
| 🗄 🗄 📈 🌠 X2X          | IF1         |         | X2X Link Schnittstelle                              |
| - 🔥 X20DI9371        | ST2         | 1.0.2.0 | X20 Digital 12xE, 24V, Sink, 1 Leiter               |
| 🐔 X20DO9322          | ST3         | 1.0.3.0 | 12 Ausgänge 24 VDC / 0,5 A, Source                  |
| 🐔 X20AI4622          | ST4         | 1.0.4.0 | 4 Eingänge ±10 V / 0 bis 20 mA 12 Bit               |
| 🔬 X20AO4622          | ST5         | 1.1.0.0 | 4 Ausgänge +10V / 0 bis 20mA / 4 bis 20mA, 12 Bit   |
| Metrotec_U19-SB_V2.0 | ST160       | 1.0     | Metrotec U19-SB V2_01xdd                            |
| ⊷ USB                | IF4         |         | Universal Serial Bus                                |
| + USB                | IF5         |         | Universal Serial Bus                                |
| 🐁 X2X                | IF6         |         | B&R X2X Link                                        |
| 4                    | SS1         |         |                                                     |

The address (factory setting) = 160

# The following IO variables are defined

| Kan | alname                           | Physikalischer Wert | Forcen | Wert forcen |
|-----|----------------------------------|---------------------|--------|-------------|
| 4.0 | ModuleOk                         | TRUE                |        | FALSE       |
| •   | Parameter_Nr_l2000_S01Out        | 0                   |        | 0           |
| •   | Value_I2000_S02Out               | 0                   |        | 0           |
| •   | Latch_I2000_S03Out               | 0                   |        | 0           |
| ••  | Lin_ppm_l2100_S01                | 0                   |        | 0           |
| •   | Temperature_l2100_S02            | 100                 |        | 0           |
| ••  | Output_1_Min_Lin_P4_I2100_S03    | 0                   |        | 0           |
| ••  | Output_1_Max_Lin_P5_l2100_S04    | 250000              |        | 0           |
| ••  | Limit_Value_Lin_P6_l2100_S05     | 250000              |        | 0           |
| ••  | Output_2_Min_Lin_P12_I2100_S06   | 0                   |        | 0           |
| ••  | Output_2_Max_Lin_P13_l2100_S07   | 1000                |        | 0           |
| ••  | Hyst_Lim_Relay_Lin_P14_I2100_S08 | 0                   |        | 0           |
| ••  | Cable_length_P64_l2100_S09       | 1                   |        | 0           |
| ••  | Knoten_ID_P81_I2100_S0A          | 160                 |        | 0           |
| ••  | Ready_l2100_S0B                  | 0                   |        | 0           |
| ••  | Alarm_I2100_S0C                  | 0                   |        | 0           |
| ••  | Latch_Acknowledge_l2100_S0D      | 1                   |        | 0           |
| ••  | SignOfLife_I2100_S0E             | 55                  |        | 0           |
| ••  | ErrorFlags_P83_l2100_S0F         | 0                   |        | 0           |

# System variable

| Variable | Туре | Description       |
|----------|------|-------------------|
| ModulOK  | BOOL | Connection status |

# Input variables

| Variable                         | Туре  | Description                                   |
|----------------------------------|-------|-----------------------------------------------|
| Lin_ppm_I2100_S01                | UDINT | Oxygen measured value in ppm                  |
| Temperature_I2100_S02            | UDINT | Sensor temperature in °C                      |
| Output_1_Min_Lin_P4_I2100_S03    | UDINT | Measuring range mA output 1 (4mA) in ppm      |
| Output_1_Max_Lin_P5_I2100_S04    | UDINT | Measuring range mA output 1 (20mA) in ppm     |
| Limit_Value_Lin_P6_I2100_S05     | UDINT | Alarm limit oxygen content in ppm             |
| Output_2_Min_Lin_P12_I2100_S06   | UDINT | Measuring range mA output 2 (4mA) in ppm      |
| Output_2_Max_Lin_P13_I2100_S07   | UDINT | Measuring range mA output 2 (20mA) in ppm     |
| Hyst_Lim_Relay_Lin_P14_I2100_S08 | UDINT | Hysteresis limit value relay in ppm           |
| Cable_length_P64_I2100_S09       | UDINT | Cable length sensor module (without function) |
| Knoten_ID_P81_I2100_S0A          | UDINT | Node ID, default 160                          |

| Ready_I2100_S0B             | UDINT | Corresponds to LED READY (0/1)    |
|-----------------------------|-------|-----------------------------------|
| Alarm_I2100_S0C             | UDINT | Corresponds to LED alarm (0/1)    |
| Latch_Acknowledge_I2100_S0D | UDINT | See parameter change 12.2         |
| SignOfLife_I2100_S0E        | UDINT | value increases after each update |
| ErrorFlags_P83_I2100_S0F    | UDINT | Error flag = $0$ - no error       |

#### **Output variables**

| Variable                  | Туре  | Description                          |
|---------------------------|-------|--------------------------------------|
| Parameter_Nr_I2000_S01Out | UDINT | Number of the variable to be changed |
| Value_I2000_S02Out        | UDINT | New value for variable               |
| Latch_I2000_S03Out        | UDINT | See parameter change 12.2            |

# 12.2 Changing parameter P81 node ID:

The P81 Node ID parameter is the only parameter that can be changed via the bus. To change this parameter to 100, for example, the following sequence must be observed.

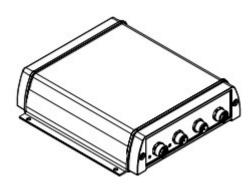
- 1. Write the parameter number [81] into the variable "Parameter\_Nr\_I2000\_S01Out".
- 2. Write the value [100] into the "Value\_I2000\_S02Out" variable.
- 3. Read the "Latch\_Acknowledge\_I2100\_S0D" variable, increase it by 1 and write it to the "Latch\_I2000\_S03Out" variable.

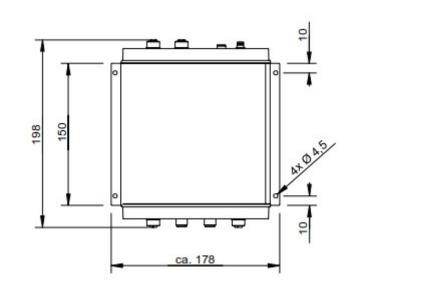
This triggers the takeover process in the measuring device!

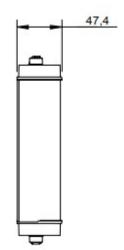
After a successful change, the "Latch value" is increased again by 1 by the measuring device and as an acknowledgment in the variable "Latch\_Acknowledge\_I2100\_SOD". The "ErrorFlags\_P83\_I2100\_SOF" remain at 0.

The value is immediately adopted and stored in the EEPROM. In the future, the measuring device will start with the new value.

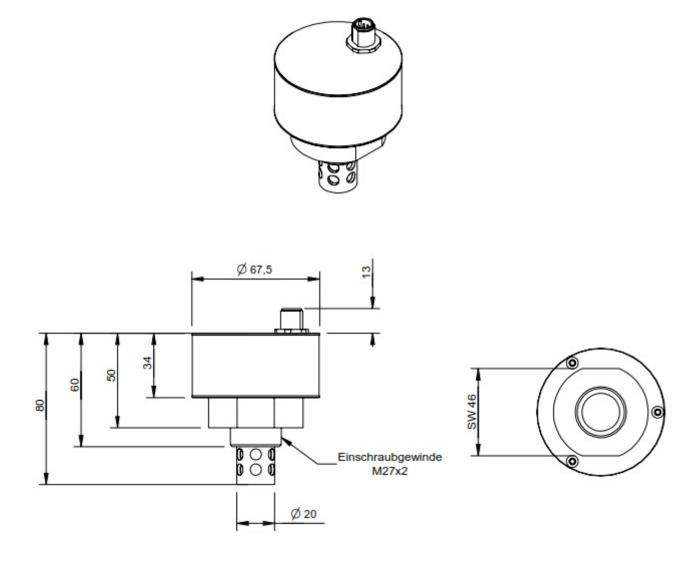
#### ErrorFlags\_P83\_I2100\_S0F


The error flag is set to 1 if the parameter number is unknown.


# **13 Specifications**


| measuring range                                         | Section 1 0-5% O <sub>2</sub><br>Section 2 0-25% O <sub>2</sub>                                                                                                         |
|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ambient temperature<br>Precision*<br>Measuring accuracy | 0 to 45 degrees Celsius<br>+/- 1,5 %<br>+ 0.5 mV EMF sensor at least - 0.5 ppm<br>- 2 mV EMF sensor at least + 1.5 ppm<br>+/- 2 degrees Celsius<br>+/- 2 % of mA output |
| Dimensions                                              | ca. 48 x 178 x 198 mm (HxWxD)                                                                                                                                           |
| Weight<br>Supply voltage                                | 0.5 kg<br>24 VG (22.6 to 26.4 Volt)<br>Observe Type Plate! Wrong power supply can<br>destroy the module!                                                                |
| Output<br>Analog output<br>Relay output                 | Acc. to sensor type, ca. 100 VA max.<br>4 – 20 mA floating<br>0 mA results in error message<br>for collective alarm, 1A, 24 V (ohmic)                                   |

\* Precision was established from measuring values with connected sensor A19 according to DIN 55350.


# 14 Drawings







# **METROTEC**

